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The method of discrete vortices (MDV) is an efficient method of solving singular integ- 
ral equations encountered in wing theory. This explains its successful utilization to solve 
a broad class of linear and nonlinear problems of stationary, nonstationary, separation, 
and nonseparation flows around a wing. As a rule computation results are in good agreement 
with experimental data. Extensive literature (see [1-4], say) is devoted to the method of 
discrete vortices. Many MDV aspects have been subjected to a detailed analysis, including 
questions of the convergence of different computational schemes and expansion of its domain 
of application [5]. 

In the majority of papers a finite-span wing is modeled by a system of discrete horse- 
shoe vortex filaments (q-shaped vortices). For this the wing is divided into a finite 
number of elements, each of which is replaced by one R-shaped vortex. The condition of 
fluid nonpenetration through the wing is satisfied at control points ordinarily chosen at 
equal distances between the discrete vortices. Such a computation scheme assures converg- 
ence of the approximate solution to the exact as the number of elements increases for any 
fixed internal part of the wing [5] but yields an uneliminable error for discrete vortices 
located at the wing leading edge (under conditions of nonseparation flow of this edge). An 
analogous situation holds also when modeling the wing by a system of closed vortex frames. 

It is shown in [6, 7] that a change in the control point location while converving the 
discrete vortex position can result in convergence of the approximate to the exact solution 
on the whole wing including its edge. For this the control points should be chosen from 
the condition that a continuous vortex layer simulating the wing and the vortex sheet behind 
it will induce the same velocities at these points as does the system of discrete vortices. 
The problem of finding the control points can be solved separately for each part of the 
wing with local singularities of the vortex lifting surface that are given in conformity 
with the selected class of solutions of the initial singular integral equation taken into 
account. 

Appropriate control points are determined in this paper for a finite span rectangular 
wing in cases of its simulation by ~-shaped vortices and closed vortex frames. Examples of 
a computation of stationary aerodynamic characteristics and apparent masses are presented 
that display the high efficiency of the computational schemes being proposed. 

i. Let us first consider a scheme of H-shaped vortices. To select the control points 
correctly in this scheme it is necessary to know the singularities of the vortex lifting 
surface simulating the wing. 

Let a stationary ideal incompressible fluid flow around the ring and let the problem 
of the flow be solved within the framework of linear thin wing theory. Let us couple a 
Cartesian Oxyz coordinate system with the wing (Fig. i). We represent the vector intensity 
of the vortex surface simulating the wing and the vortex sheet behind it in the form 

~(x, z) = ~ ( x ,  z)x ~ + ~ ( x ,  z)z ~ 

(x ~ z ~ are the coordinate axis directions). In linear theory ~z is the intensity of the 

attached and Yx of the free vortices. The functions Yx, Yz are connected by the equation 

div? = 0. On the vortex sheet Yz = 0 and 8u = 0. The following conditions 

7~(0, z) = 0  for ]z[ ~ I ,  7:(x, --l) =7~(x,  l) = 0  for O ~ x ~ b  
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should be satisfied on the wing leading and side edges for nonseparation flow around these 
edges. 

We assume that the solution of the problem of the flow around the wing is sought in 
the class of functions ~z bounded at the wing trailing edge and unbounded at the leading 

edge. Then yz(b, z) = 0 at trailing edge points (Zhukovskii postulate) and in the neighbor- 

hood of the leading edge (x = 0, Izl ~ ~) the function ~z has the singularity 7z ~ i/]/x. 

As regards the functions Yx, then in the neighborhood of the side edges (0 < x < b, Izl = 

s 7x ~ i/ ]/~--z ~ . Hence, at points of the wing (0 ~ x ~ b, Izl ~ s the functions 7x, 

7z are written thus 

r - 
?~(x , z )=  ~ R ~ ( x , z ) ,  ?~(x,z) = V --it-. ( l~-z2)  R2(x'z)' ( 1 . 1 )  

where R1, R2 a re  f u n c t i o n s  having no s i n g u l a r i t i e s  a t  t he  wing edges .  

Now, let us partition each half-wing into a finite number of elements. To do this we 
take points x i = ibm, i = i, ..., N I at the root chord (the x axis) and the points zj = J~2, 

j = i .... , N 2 (A l = b/N I, A 2 = Z/N 2) at the leading edge of the left half-wing (the z axis). 
Drawing lines parallel to the x and z axes through them, we obtain N = N I x N 2 elements Sij. 

We divide the right half-wing in an analogous manner. 

Following the method of discrete vortices, we associate a H-shaped vortex filament 

of constant intensity rij with each element Sij by locating it at a distance ~A I from the 

leading edge of this element (see Fig. i). The coefficient ~ governing the location of the 
apex of the vortex filament on the element Sij in fractions of its chord can be selected 

arbitrarily from zero to �89 since for such ~ the apex of a horseshoe vortex Fij and the cor- 

responding control point will not emerge beyond the limits of the element Sij. The arbi- 

trariness in the selection of D is associated with the fact that the displacement of the 
whole system of H-shaped vortices and control point on the wing while conserving the spac- 
ings between them does not affect the accuracy of the computation of the discrete vortex 
intensity rij. In the majority of computational schemes ~ = �88 is given. 

By the definition of a H-shaped vortex 
xi 

FO= S ?z(x,z)dx, z j _ l < z < ~ .  ( 1 . 2 )  
x i - -  1 

i t  f o l l o w s  from ( 1 . 2 )  t h a t  s i m u l a t i n g  a wing by a sys tem of  H-shaped v o r t i c e s  co r r e sponds  
to  t h e  assumpt ion  of  t he  independence  of  the  f u n c t i o n  7z from z in each e lement  S i j .  At 

t he  same t ime ( 1 . 2 )  a l lows  any dependence of  ~z on x in the  s t r i p  zj_ 1 < z < zj i n c l u d i n g  

t he  s i n g u l a r i t y  on t he  wing l e a d i n g  edge and ze ro  a t  t he  t r a i l i n g  edge.  T h e r e f o r e ,  a cco rd -  
ing to  ( 1 . 1 )  and ( 1 . 2 ) ,  t he  s o l u t i o n  of  t he  problem of  f low around a wing by t he  method of  
H-shaped v o r t i c e s  pe r mi t s  r e p r e s e n t a t i o n  of  the  i n t e n s i t y  of  the  a t t a c h e d  v o r t i c e s  ~z in 
the  form 

V~ (x, z) V z b - x ~ / j ( X ) ,  Zj_I'<Z<Zj, ] =  1 . . . . .  N 2. ( 1 . 3 )  

Let us turn to setting up a connection between rij and the intensity of the free vor- 

tices 7x" In the computatoinal scheme under consideration the free vortices are modeled 

by "whiskers" converging to the apices of the H-shaped vortices. The vector intensities 
of the "whiskers" convergent with each attached vortex Fij are equal in absolute value and 

opposite in direction. Consequently, their total intensity at the element Sij equals zero. 

The sum of the "whiskers" intensities convergent to adjacent wing elements and located at 
the junction between them (at the sections z = zj) differs from zero in the general sense. 

In this connection, the function 7x should not be determined on Sij but on the wing elements 

Sij* shifted a distance A2/2 along the z axis with respect to Sij (see Fig. i). Consequent- 

ly, the elements SIN2* abutting on the wing side edge have the width A2/2 while the rest are 
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of the width A 2 (the elements Si0* are divided in halves by the root chord). The intensity 

of the free vortices Tx is then determined on Sij* in terms of the sum of the intensities 

of all the "whiskers" passing through Sij*. By analogy with (1.3), the function Tx can here 

be written as 

/2g,~-~-z 2 gi(z), x i - l < x < x i ,  i =  I . . . .  , N  1, ( 1 . 4 )  

Let us turn to finding directly the location of the control points on the wing when 
it is simulated by N-shaped vortices with the dependences (1.3) and (1.4) taken into account. 
Let us represent the coordinates of the control points x0i, z0j in the form 

x0~ = ~1(~ - I  + v ~ ) ,  i = i . . . . .  N .  z0~ = A~(j - -  V z ) ,  ( 1 . 5 )  

j = 1 . . . . .  N 2. 

The c o e f f i c i e n t s  Vxi , Vzj y i e l d  t h e  d i m e n s i o n l e s s  d i s t a n c e  be t w e e n  a c o n t r o l  p o i n t  on S i j  

and t h e  e d g e s  o f  t h i s  e l e m e n t  i n  f r a c t i o n s  o f  & 1 and A2, r e s p e c t i v e l y .  F o l l o w i n g  [ 6 ] ,  we 
e v a l u a t e  Vxi ,  Vzj s e p a r a t e l y  f o r  e a c h  s m a l l  f i x e d  domain  w i t h i n  t h e  wing and n e a r  t h e  l e a d -  

i n g ,  t r a i l i n g ,  and s i d e  e d g e s  i n d e p e n d e n t l y  o f  t h e  i n f l u e n c e  o f  t h e  r e m a i n i n g  p a r t  o f  t h e  
v o r t i c a l  s u r f a c e .  To do t h i s ,  we l i m i t  o u r s e l v e s  i n  e a c h  domain t o  t h e  f i r s t  a p p r o x i m a t i o n  
f o r  u  %z' F o r  t h e  i n t e r i o r  domains  such  an a p p r o x i m a t i o n  i s  Tx = c o n s t ,  7z = c o n s t ,  f o r  

domains  n e a r  t h e  l e a d i n g  edge  Yx = 0, Xz = c o n s t / Y ~  , t r a i l i n g  edge  Yx = c o n s t ,  Yz = c o n s t  x 

V b - - x ,  and n e a r  t h e  s i d e  e d g e s  Tx = c ~  Xz = 0. 

We now d i v i d e  e a c h  domain  i n t o  e l e m e n t s  o f  t h e  form S i j ,  S i j * ,  we r e p l a c e  t h e  v o r t e x  

l a y e r s  on them by d i s c r e t e  v o r t i c e s ,  we c a l c u l a t e  t h e  v e l o c i t i e s  i n d u c e d  by t h e  s y s t e m  o f  
d i s c r e t e  v o r t i c e s  and t h e  c o n t i n u o u s  v o r t e x  l a y e r ,  and we f i n d  t h e  p o i n t s  a t  wh ich  t h e s e  
v e l o c i t i e s  a r e  i n  a g r e e m e n t .  By i n c r e a s i n g  t h e  number o f  e l e m e n t s  i n  t h e  f i x e d  domain  u n d e r  
c o n s i d e r a t i o n  t o  i n f i n i t y ,  we c o n s e q u e n t l y  o b t a i n  t h e  c o e f f i c i e n t s  Oxi ,  Vzj f o r  t h e  l i m i t  

c a s e  N 1 § ~,  N 2 § ~. The Vxi ,  Vzj ,  c a l c u l a t e d  i n  such  manner  t h a t  g o v e r n  t h e  c o o r d i n a t e s  

o f  t h e  c o n t r o l  p o i n t s  x 0 i ,  z 0 j ,  p e r m i t  s o l u t i o n  o f  t h e  p r o b l e m  of  t h e  f l o w  a r o u n d  a wing 

f o r  an a r b i t r a r i l y  l a r g e  number o f  d i s c r e t e  v o r t i c e s .  In  a f i r s t  a p p r o x i m a t i o n  we o b t a i n  

Vxl = ~ + 0.55, Vxi : ~ + 0.5 for  i = 2 . . . . .  5 r l - - i ,  V~N 1 = ~t+ 0.38" ( 1 . 6 )  

Vzy = 0.5 for ] ~ i . . . . .  N 2 - - ~ ,  vzn~ = 0,4. 

In  o t h e r  w o r d s ,  t h e  s t a n d a r d  scheme o f  a u n i f o r m  a r r a n g e m e n t  o f  v o r t i c e s  and c o n t r o l  
p o i n t s  i s  c o n s e r v e d  on t h e  whole  wing e x c e p t  f o r  t h e  e l e m e n t s  a b u t t i n g  on t h e  e d g e s .  But 
t h e  c o n t r o l  p o i n t s  a r e  s h i f t e d  somewhat backward  n e a r  t h e  l e a d i n g  e d g e ,  f o r w a r d  n e a r  t h e  
t r a i l i n g  e d g e ,  and c l o s e r  t o  t h e  e d g e s  a t  t h e  s i d e  e d g e s .  

2. Let us clarify the influence of local singularities of the vortical lifting surface 
on the analysis of finite-span wing hydrodynamic characteristics by the method of N-shaped 
discrete vortices. Let a stationary ideal incompressible fluid flow around the wing at 
an angle of attack ~, and let the corresponding boundary value problem be solved in a linear 
formulation [I]. We perform the computation for two schemes, one of which is the standard 
scheme (i/4, 3/4) of a uniform arrangement of discrete vortices and control points while 
the other differs from the first just by a different control point distribution given by 
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(1.5), (1.6) near the wing edges. Strictly speaking, both computational schemes "are sen- 
sitive to" the unlimited growth in the vortex surface intensity during the approach to the 
wing leading edge, which is due to the arrangement of discrete vortices ahead of the control 
points in each element. But the second scheme permits taking account of the singularity 
at the leading edge more completely and, moreover, takes account of the nature of the behav- 
ior of the vortical intensity near the wing trailing and side edges. 

The lift force Api j acting on the element Sij is: Api j = -pVFij&2, where V is the 

flow velocity at infinity, and p is the liquid density. The total lift hence is 

N I X~ 

i=1 j=l 

Here S is the wing area; Cy ~ is the derivative of the lift coefficient Cy at the angle of 

attack ~. 

The results of computing the coefficient Cy ~ for a wing of span X = 2 (X = 2s are 

represented in Fig. 2. The curves 1 correspond to the standard computation scheme, and 2 
to the proposed scheme using (1.5) and (1.6) for g = i/4. The dashed line is the result 
of a computation from [8] obtained by another method that is in good agreement with the 
data of other authors and can be taken as test values. 

The materials presented show that a computation by the proposed scheme of selecting 
control points reduces to the test solution as the number of elements on the wings grows 
considerably more rapidly than by the standard scheme. This permits the required accuracy 
of the computations to be obtained for a smaller number of elements. Let us note that the 
lift force Ry determined by the standard scheme depends slightly on the number of partitions 

N I along the wing chord (in the limit case X ~ ~ the coefficient is Cy ~ = 2v for any N~). 

In addition to the lift force, the main characteristics of wing interaction with a 
stream are the moment of the hydrodynamic forces M z relative to the z axis and the induced 

drag Rxi. Within the framework of linear thin wing theory 

+{! } 3I~= j" zy~(z,z)dx dz, R,i=R~,~--Q; (2.1) 
- - l  

+ l  

Q=-~pl imS zy~(z.z)dz (2.2) 
x~0 --l 

(Q is the suction force acting on the leading edge of a thin wing). 

It is seen from (2.1) and (2.2) that the distribution of the vortex intensity 7z(X , z) 

over the wing surface must be known to evaluate M z and Rxi. The discrete vortex method 

permits determination of just the total vortex intensity Fij on the elements Sij. Conse- 

quently, the problem occurs of an approximate determination of yz(X, z) according to a given 

value of Fij. It can be solved with a different degree of approximation. A spline approx- 

834 



Cx{. 
2 

c 3, 

o, eo- 

f 

lq1= 

I 
8 ~ 

4 8 12 N 2 

eNI S c h e m e s / 2 ~  

fr f~I-~ F2f 3 -f~ 

~ Z  
o N 

Scheme 

-fO F7 f z f3 W 

Fig. 4 Fig. 5 

imation of the function yz(X, z) is used in this paper in each strip zj_ I < z < zj, j = i, 

..., N2, in the form 

-(;) r ~ a {'0 t ~ - - ~ i ) ~ ,  ~ i - l ~ i ,  ( 2 . 3 )  
yz(X,Z) = Uai-a + aai-a ( ~ - g i )  + a , - l ~  i =  2 . . . . .  N t -  1, 

ll/T-----~ra C;> a (;~ (t ~)), ~ ~ ~ ~ 1 �9 F i - -  ~k  35 '1 - -3  + 3N1- -2  - -  ~ N I - - 1  

(g = x / b ,  g i  = i / N z ) "  

The formulas (2.3) contain (3N i - 2) unknown coefficients. To find them we demand 
that the total vortex layer intensity according to (2.3) be equal to Fij in each interval 

[xi_1, x i] and the function Yz and its derivative be integrable on the inner boundaries of 

these intervals. We consequently obtain a system of (3N l - 2) linear algebraic equations 
whose solution yields the desired coefficients. 

The accuracy of the approximation (2.3) was estimated in the problem of plane station- 
ary flow around a plate, which has the exact solution yz(X) = -2V~ V-(b --x)Ix . The discrete 
vortices FI, .... FNI , were determined from this solution and then the function 7z(X) was 

restored by using (2.3). Computations showed the high accuracy of the approximation (2.3). 
Thus, for a number N l = I0 of discrete vortices, say, the relative error in the approxima- 
tion did not exceed 1% at all points of the plate, including the leading edge. 

The approximation (2.3) was used to compute the moment of the hydrodynamic forces and 
the induced drag acting on the wing by means of (2.1) and (2.2). The quantities M z and Rxi 
had the form 

Mz = (g2)ov'-sc~zo:, R ~  = (1/2) ov ' - s c~ .  

Results of computing the dimensionless coefficients Cmz ~, Cxi/Cy 2 for a wing of span 

I = 2 are represented in Figs~ 3 and 4 as obtained from the standard (curve i) and proposed 
(2) schemes. The dashed lines correspond to the data in [8]. The results presented again 
display the high efficiency of the proposed computational scheme. 

3. We now examine the scheme of closed vortex frames. Such a method of modeling the 
vortex surface is conveniently utilized to solve problems about the apparent masses of a 
vibrating wing [2]. In this case the utilization of closed vortex filaments of constant 
intensity permits automatic execution of the condition of no flow circulation around any 
wing section. 

The solution for the carrier vortex surface intensity vector ?(x, z, t) in problems 
of apparent mass is sought in the class of functions for which the vector component ? 
tangential to the wing edges has a singularity at the edges. The influence of these sing- 
ularities on the location of the control points is analogous to the influence of the ~- 
shaped vortex "whiskers." Namely, for wing elements abutting on the edges the control 
points should stand off 0.4 of an element length from the corresponding edge while located 
in their center in the remaining elements. 
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The efficiency of the proposed control point selection is estimated by the solution of 
the problem of the apparent masses of a plate of infinite span performing translational vib- 
rations along the y axis. For a plane flow the vortex frames on a plate y : 0, z e [0, b] 
are degenerate into a system of discrete vortices F1, -F z + F2, ..., -FN_ z + F N, -F N located 

at the points x 0 = 0, x I = b/N ..... XN_ I = (N - l)b/N, x N = b, respectively. Shown as an 

example in Fig. 5 is the arrangement of the vortices and control points on a plate (I = ~) 
for the number of elements N = 3 (schemes 1 and 2), Scheme 1 corresponds to the standard 
control point arrangement between vortices [X0k = b(k - 0.5)/N, k = 1 ..... N] while the 

control points in the scheme 2 are chosen with the local singularities of the function yz(X, 

t) taken into account near the edges [x0z = 0.4b/N, X0k = b(k - 0.5)/N for k = 2 ..... N - 

i, X0N = b(n - 0.4)/N]. 

The computational scheme 3 that is obtained from scheme 1 by replacing each pair of 
vortices (-Fk_ i + F k) by one vortex [2] is ordinarily used at this time to solve apparent 

mass problems. Consequently, we have a system of discrete vortices Fm, ..., FN+ i located 

at the ends of the plate elements while we select the control points at different spacings 
between the vortices (see Fig. 5). Strictly speaking, the lifting vortex surface in scheme 
3 is not simulated by vortex frames but by H-shaped vortices whose number is one greater 
than the number of control points. Consequently, in contrast to schemes 1 and 2, scheme 3 
does not automatically satisfy the condition of circulation-free flow around a plate and 
it must be required for its satisfaction that the sum of the discrete vortices equal zero. 

Within the framework of the linear thin wing theory, the hydrodynamic pressure at 
points of a plate vibrating in a fluid at rest (at infinity) without the formation of vortex 
wakes is determined by the Cauchy-Lagrange integral p - p~ = -p3 ~/3t ( ~ is the velocity 

potential and p~ is the pressure at an infinitely remote point). Hence, the projection of 
the total hydrodynamic force on the axis is 

b x 

Ru = P ~ ?z (u, t) du dx. 

In the case under consideration of translational plate vibrations Ry = -lyy, where iy 

is the apparent mass coefficient: y(t) is the plate displacement along the y axis. For 
an exact solution of the problem ly = p~b2/4. 

It follows from (3.1) that a connection must be established between the intensity of 
the initial vortex layer ~z(X, t) and the system of discrete vortices for a solution of the 

same problem by the discrete vortices method. This connection is set up by using a spline 
approximation of the function ~z analogously to (2.3). Here Yz should have a singularity 

at both edges of the plate. Moreover, it should be taken into account that the vortices 
f i and -F N determine the total vortex layer intensity in elements of length 51/2, while the 

remaining vortices govern elements of length Ai. As a result, yz(X, t) is approximated by 

functions of the form 

i = 2  . . . .  N ,  

[~k* = Xk* /b  = ( k -  0 . 5 ) / N ,  k = 1 . . . . .  N] .  

The f o r m u l a s  ( 3 . 2 )  c o n t a i n  3N + 1 unknown c o e f f i c i e n t s  b i * ,  

the N + 1 conditions 

( 3 . 2 )  

. . . ,  bsN+z* that are found from 

~1 xh b 

0 $ 
xh_ 1 - - x N  

(3.3) 
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and the 2N-continuity conditions of the function ~z and its first derivative at the points 

x1* ..... XN*. The quantities F I ..... FN+ I should be on the left in (3.3) when computing 

discrete vortices according to scheme 3. 

The dependence of the relative error in computing the apparent mass coefficient; ly 

according to schemes 1-3 on the number N of elements on the plate is represented in Fig. 5. 
The results presented show that a computation using scheme 2 that takes account of the local 
vortex layer singularities, will converge to the exact value iy much more rapidly than a 

computation using the standard schemes 1 and 3. It is interesting to note that schemes 1 and 
3 yield identical relative errors in absolute value but of opposite sign in the test problem 
under consideration. 

The apparent masses of a rectangular plate (0 ~ x ~ b, y = 0, 0 ~ z ~ ~) vibrating 
translationally along the y axis were computed by schemes analogous to 1-3. The plate was 
partitioned into N I • N 2 elements, each of which was replaced by a closed vortex frame (an 

example of such a partition is presented in Fig. 6 for N I = N= = 3). The frames are re- 
placed by H-shaped vortices in elements abutting the trailing edge in scheme 3. 

The results of computing the coefficient ly by using schemes 1-3 are represented in Fig. 
6 as a function of the plate span X = ~/b for N l = N 2 = i0. The quantity ly= corresponds to 

the exact value of ly for I = ~. The dashed line is the experimental dependence of ly on 1 

from [9]. 

The data of a computation using scheme 2 are in good agreement with experiment for 
all values of I while a computation using scheme 1 yields exaggerated and, using scheme 3, 
reduced results especially for large plate spans. Figs. 5 and 6 illustrate the high effici- 
ency of the computation scheme 2. 

Therefore, when modeling a wing by systems of K-shaped vortices and closed vortex 
fames, the computational schemes in which the control points are selected with local sing- 
ularities taken into account will assure high accuracy of the computation of the distribut- 
ed and total hydrodynamic wing characteristics. 
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